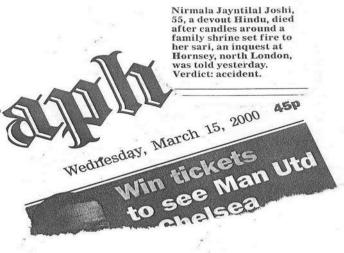


Fundamental aspects of fibre and fabric flammability and flame retardancy

Baljinder K.Kandola University of Bolton, UK

University of Bolton

Contents


- Flammability of Textiles : The Problem
- Measurement of Fabric Flammability
- Methods of Flame Retarding Textiles
- Current and future trends

Contents

- Flammability of Textiles : The Problem
- Measurement of Fabric Flammability
- Methods of Flame Retarding Textiles
- Application Based Performance Requirements and FR Technologies

Sari death

★★★ 2 — Bolton Evening News, №

Woman burned in horror accident

A WOMAN was fighting for her life in hospital today after her nightdress caught fire in a freak accident at her Bury home.

Miss Sarah Cunningham, aged 27, was turned into a human fireball as her clothing caught fire.

Firefighters believe the badly burned woman, who has learning difficulties, was playing with matches. She suffered 25 per cont

She

defin to be these

resour.

talice

the m

to cc

for a.

Mei

July 1999

Major UK Fires

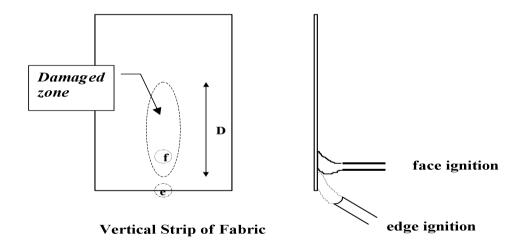
Fires	Cause	Casualties		
	Deaths	Inju	uries	
Taunton, 1978	Laundry	12	15	
Woolworths, 1979	Furniture	10	53	
Stardust, 1981	Seating	48	128	
Manchester	Fuel/Furnishing	55	15	
airport, 1985				
Windsor Castle	Curtain	-	-	

The Problem:

- Clothing on the person
 - Nightdresses (UK Regulations: Consumer Protection Act...The Nightwear (Fire) Safety Regulations 1985)
 - Typical fabrics: Cotton, polyester/cotton, acrylic, acetate, nylon, polyester, wool, silk
- Furniture and furnishings, bedding
 - The Furniture and Furnishings Fire Safety Regulations 1988
- Curtains and drapes
- Floor covering

Contents

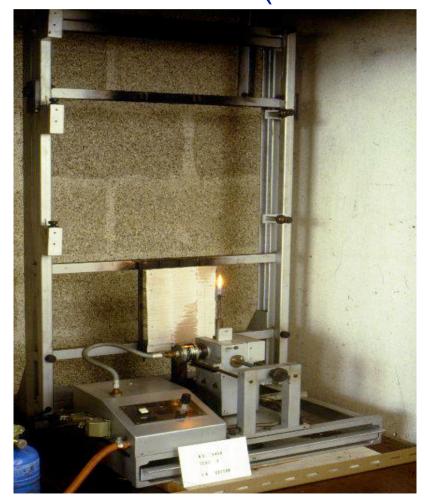
- Flammability of Textiles : The Problem
- Measurement of Fabric Flammability
- Methods of Flame Retarding Textiles
- Application Based Performance Requirements and FR Technologies


Flammability testing

- Ignitability
- Ease of extinction
- Burning rate
- Heat release tests
- Mannequin tests
- Full products tests

Ignitability

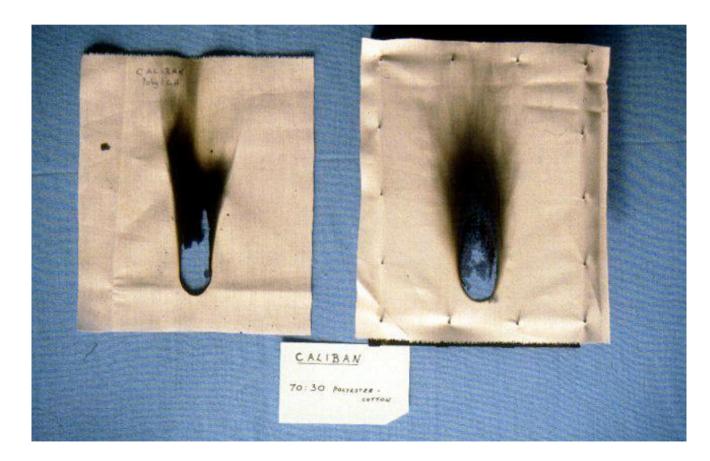
Simple Vertical Fabric Strip Burning Test



Can We Measure Burning Hazard?

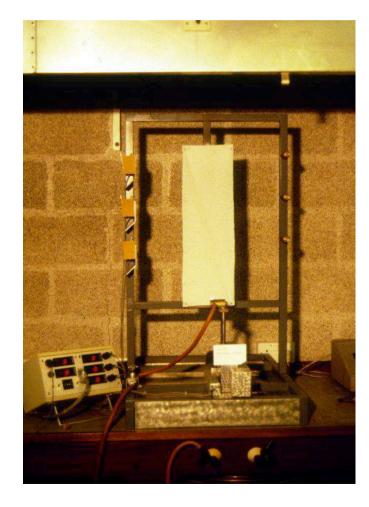
Fabric	Ignition time (Edge), s	Ignition time (Face), s
Poly/cotton (55/45)	2	3
Poly/cotton (65/35)	1	2
Cotton (lightw't)	1	2
Cotton (heavyw't)	1	4
Acrylic	1	2
Silk	2	2
Wool	3	3
Polyester	melts	melts

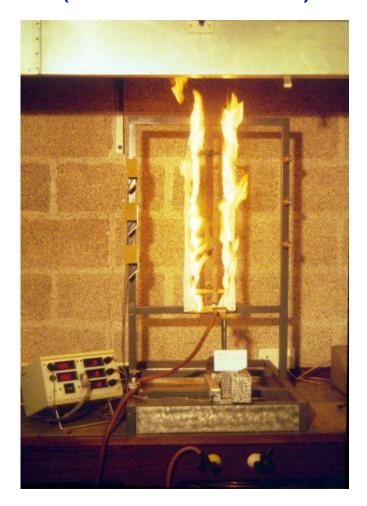
Ease of extinction BS 5438 : Test 2 (EN ISO 6941)



50:5040:60Polyester - CottonPolyester - Cotton

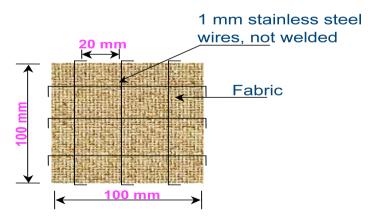
70: 30 Polyester - Cotton



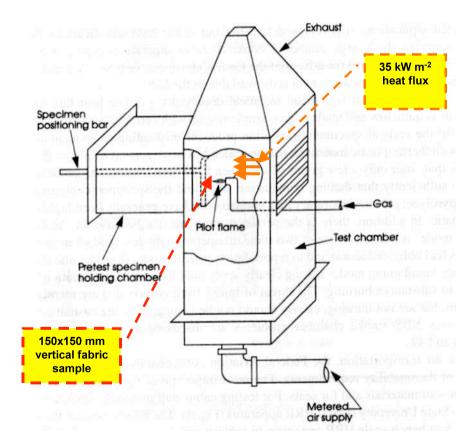


Aramid - Kevlar

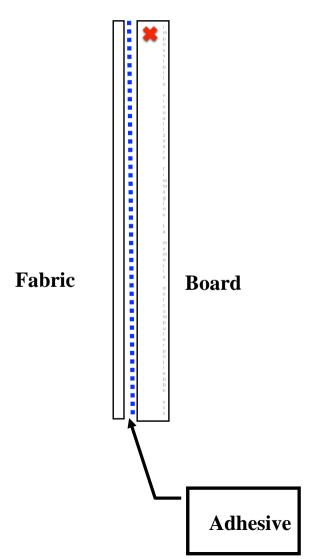
Flame spread BS 5438 : Test 3 (EN ISO 6941)



Heat release tests Cone Calorimeter (ISO 5660)



Sample holder with fabric sample: 100x100 mm



OSU Calorimeter (FAR 25.853 Part IV Appendix F)

Fabric Composites for OSU testing:

Full product tests

BS 5852 - Flammability test for upholstered furniture

Ignition Sources

0	Ciga	arette
•	.9.	

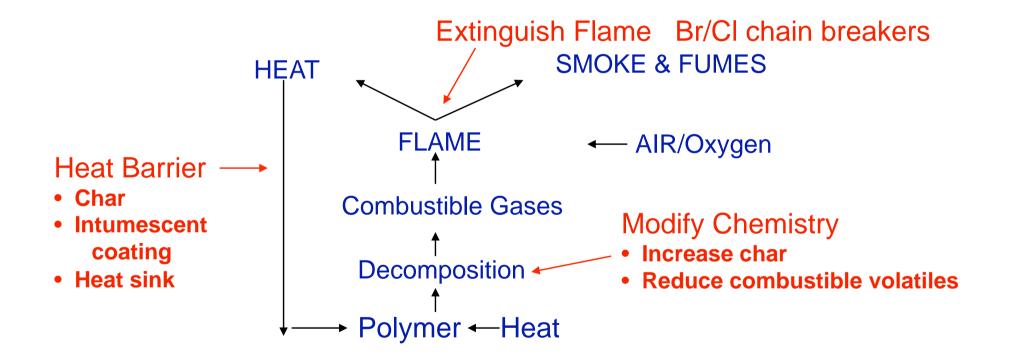
- 1-3 : Gas flames, progressively increasing size
- 4-7 : Wooden cribs, progressively increasing size

Contents

- Flammability of Textiles : The Problem
- Measurement of Fabric Flammability
- Methods of Flame Retarding Textiles
- Application Based Performance Requirements and FR Technologies

Flame Retardant

Ability to withstand ignition by a small heat source and/or to sustain flame.


University of **Bolton**

Heat Resistant

As above + continued capability of retaining geometrical coherence under defined heat hlux.

Thermoplastic fibres are <u>not</u> heat resistant eg polyester, polyamide, polypropylene

How do polymers burn?

University of Bolton

Flame retardant strategies

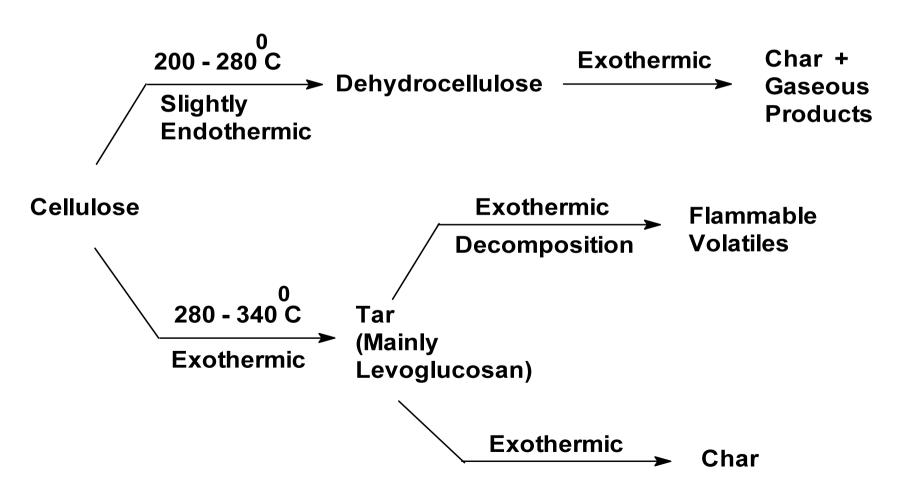
Flame retardant strategies for textiles

- Surface treatments
- FR additives / copolymers in synthetic fibres
- Heat resistant and inherently FR fibres

- FR finishes
- Coatings
- Back-coatings
- Intumescent coatings

University of **Boltor**

Plasma coating


Nanocomposite based FRs

- Aramid : Nomex & Kevlar (DuPont)
- Aramid- arimid : Kermel (Rhone Poulenc)
- PBI
- Novoloid : Kynol
- Oxidised acrylic : Panox (RK Textiles)

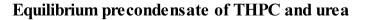
Flame Retardant Cellulosics

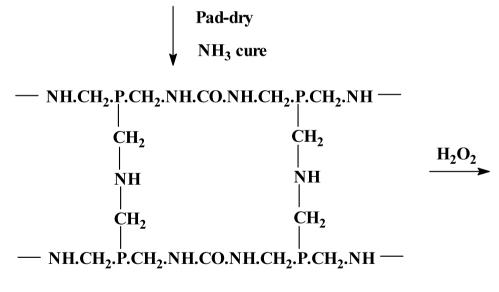
- Flame Retardant Cotton
 - :Chemical after-treatments
- Flame Retardant Viscose (incl. all regenerated cellulosics)
 - :Spinning dope additives
- Blends of cellulosics with other (usually synthetic) fibres

Decomposition of cellulose

Currently available flame retardants for cotton

Туре	Durability	Example
Salts Ammonium polyphosphate Diammonium phosphate Borax/Boric acid (7:3 % w/w)	Non or semi dura Non durable Non durable	ble
Organophosphorus Methylolated phosphonamide THPC - urea - NH ₃	Durable (50 w) Durable (50 w)	Pyrovatex CP (Ciba) Proban CC (A & W)
(Back) Coatings Chlorinated paraffin waxes Sb/halogen Sem	Semi durable i to fully durable	$C_nH_{(2n-m+2)}.cl_m$ Sb ₂ O ₃ + DBDPO + acrylic resin eg Myflam (Mydrin)




Durable FR Finishes for cellulosic are polyfunctional P-, N- containing formulations

- Self crosslinking
 - eg THPC condensates
- Cellulose crosslinking
 - eg methylolated phosphonate melamine systems

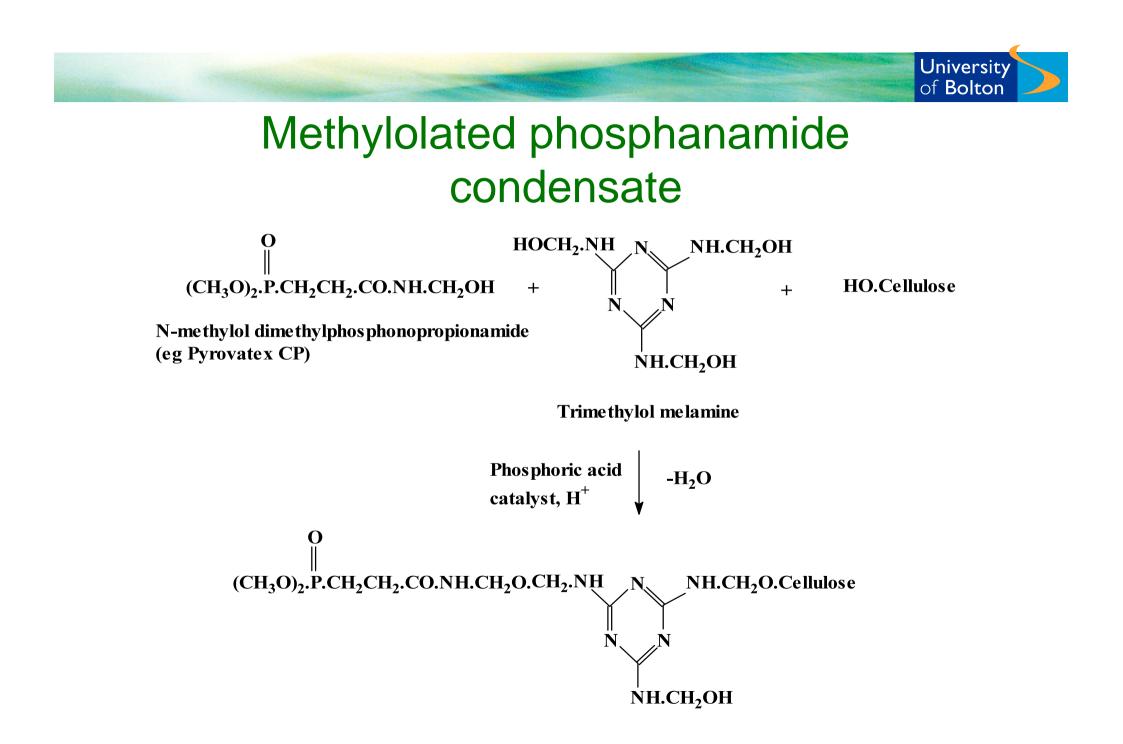
THPC - urea - NH₃ condensate

 $C\overline{I} \qquad C\overline{I} \qquad C\overline{I$

 $- \text{NH.CH}_2.\text{P.CH}_2.\text{NH.CO.NH.CH}_2.\text{P.CH}_2.\text{NH} -$

University of Bolton

Cross-linked poly(phosphine) oxide, "Proban" polymer


Cross-linked poly(phosphine)

THPC - urea - NH₃ condensate Proban (Rhodia)

University of **Bolton**

Application scheme :

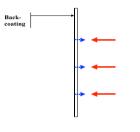
- Pad on Proban
- Dry to 12 15% relative humidity
- React fabric with dry ammonia gas
- Oxidise with hydrogen peroxide
- Wash in sodium carbonate
- Wash in water
- Stenter dry
- Soften by compressive shrinkage

Methylolated phosphanamide condensate

Pyrovatex CP (Ciba)

A typical formulation :

- Pyrovatex CP 350g
- Melamine Resin 35g
- Silicone Softner 20g
- Wetting Agent 1g
- Catalyst 15g
- Water 579g


Application Scheme :

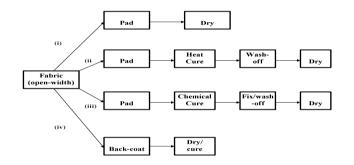
• Pad on solution of Pyrovatex

- Dry at 120°C
- Cure at 160°C for 3 minutes
- Neutralise with dilute sodium carbonate
- Wash in water
- Stenter dry

Typical Back-coating formulation

Antimony III Oxide17 pphDecabromodiphenyl oxide33 pphResin50 pph

University of Bolton


Applied at 20-30% w/w on fabric

Very successful <u>but</u>

- Environmental concerns wrt certain Br compounds
- Toxicological concerns wrt Sb₂O₃

FR Finishing & Coating Techniques

Flame Retardant Viscose

- Viscose FR (Lenzing, Austria)
 - Sandoflam 5060 (2,2 oxybis(5,5-dimethyl-1,2,3dioxaphosphorinane-2,2-disulpfide))
- Visil (Sateri, formerly Kemira, Finland)
 - Polysilicic acid, as 30 % by silica

FR finishes for wool

University of Bolton

Non- and semi- durable

- Ammonium polyphosphate (+ ammonium bromide)
- Organic P- & N- containing compounds
- Borax : Boric acid (2:1 w/w)

Durable

ZIRPRO: $K_2 ZrF_6$ or $K_2 TiF_6$ Wool - NH_2 + H⁺ \longrightarrow Wool - NH_3^+ $[Zr F_6]^{2^-}$ + 2[Wool - NH_3^+] \longrightarrow [Wool - NH_3^+] [Zr F_6]²⁻

The challenges of Blends

Flame retardant effective on one fibre in contact with other differently flame retarded fibre can prove antagonistic

- Apply the flame retardant to majority fibre present
- Apply halogen based backcoating

Synthetic Fibres

- Thermoplastic: PET, N66, N6, PP
- Melt (flaming) drips
- Sb-Br & P-based systems often work only in vapour phase
- Non-flaming melt drips (>300°C!)
- Rarely char-forming
- No currently available FR conventional synthetics are char-forming

Synthetic Fibres

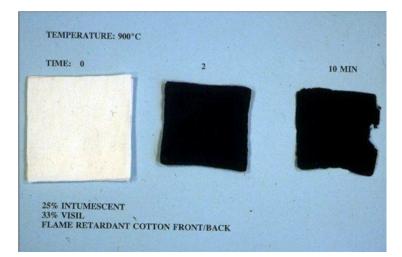
University of **Bolton**

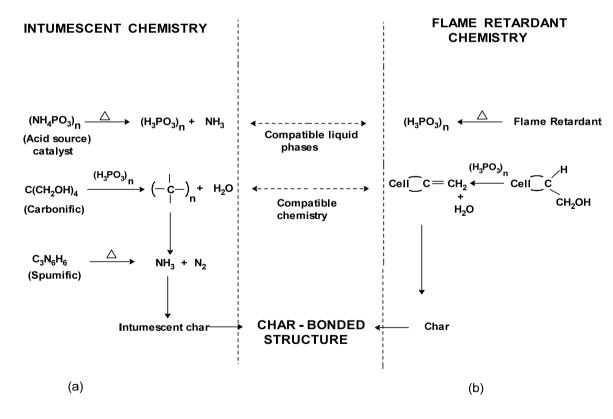
Polyester

- Trevira CS (GmbH), incorporating a comonomeric phosphinic acid unit into the PET chain
- Bisphenol-S-oligomer derivatives (Toyobo GH)
- Cyclic phosphonates (Antiblaze CU and 1010, Rhodia)
- Phosphinate salts (Clariant).

Polyamides

Very difficult to incorporate additives in polyamides because of their melt reactivities


Polypropylene


- Antimony-halogen formulations
- Tris(tribomoneopentyl) phosphate (FR 372, ICL)

All these flame retardants do not promote char formation

Use of intumescents as interactive flame retardants for char promotion

Heat treatment of fabric composite : 900°C

Contents

Of Bolton

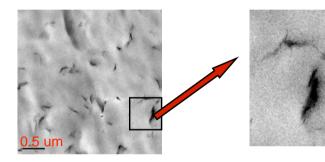
- Flammability of Textiles : The Problem
- Measurement of Fabric Flammability
- Methods of Flame Retarding Textiles
- Current and future trends

Use of Nanocomposites in Textiles

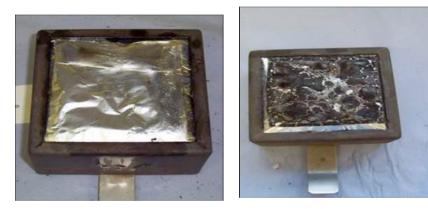

Nanocomposite : A polymer system containing an inorganic particle with one dimension in the nanometer range

University of Bolton

Mechanism of flame retardancy :


- On heating, polymer starts to degrade and nanoclays offer a barrier to diffusing products especially volatiles
- Polymer liquifies/melts nanodispersed clays aggregate and diffuse to surface forming a ceramic layer

In presence of conventional FR, clay may enhance activity (charbridging)

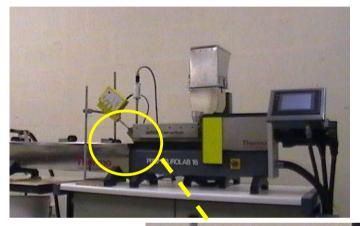


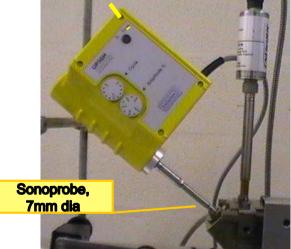
Dispersion - TEM

PP-combatibilzer – clay 20A

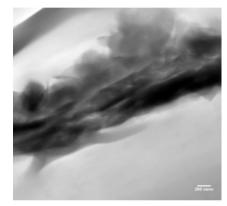
Nanoclays promote char formation

PP

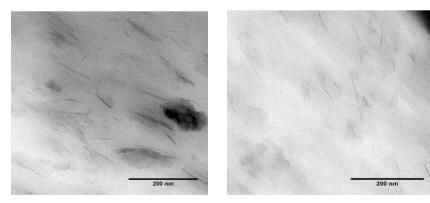

PP-Compatibilser-clay


In presence of FRs, reduce rate of flame spread

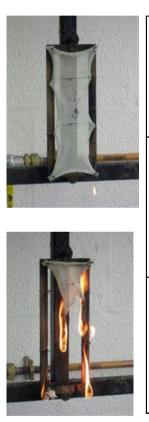
Sample	Flame spread			
	60mm, t ₁ (s)	120mm, t ₂ (s)	Flame out (s)	
PP	3	59	71	
PP-clay	4		26	
PP- clay-FR1 (P-contg)	8	-	34	
PP-clay-FR2 (Halogen contg)	14	$\overline{\mathbf{U}}$	45	


The use of ultrasonification in thermoplastic polymer melts to improve nanodispersion and efficiency of flame retardants

Hielscher ultrasound generator (30kHz) attached to the head of the extruder barrel.


TEM: PP/1.3T clay

University of Bolton


No sonification

U/s 90% 100W

TEM: PA6/25A clay

Flammability of fabrics: Vertical strip test based on BS5438 Test 1

Sample	Area density of fabric (g/m ²)	Rate of flame spread (mm/s)	No.of drops	Total mass loss (%)	Mass of the molten /burnt drops (%)
PP	110	1.5	98	100	74
PP/1.3T	100	1.4	95	100	77
PP/1.3T - U/S	90	1.6	45 🖊	71 🖊	34 📕
PP/APP	80	5.8	18	77	10
PP/1.3T/APP	70	2.3	41	100	94
PP/1.3T/APP – U/S	120	2.2	44	63	37 📕

➡U/s reduces burn rate and number of drops

- U/s increases residue and
- reduces mass% of molten drips

Flammability of fabrics: Vertical strip test based on BS5438 Test 1

Sample	Area density of fabric (g/m²)	Rate of flame spread (mm/s)	Number of drops	Total mass loss (%)	Mass of the molten /burnt drops (%)
PA6	60	2.8	17	42	19
PA6/AIPhos	50	3.9	7	14	11
PA6/25A	100	1.3	<mark>89</mark>	33	17
<mark>PA6/25A</mark> - U/S	90	2.8	<mark>36</mark>	34	21
PA6/25A/AIPhos	90	1.7	7	<mark>65</mark>	<mark>41</mark>
PA6/25A/AIPhos – U/S	70	3.4	8	<mark>45</mark>	<mark>26</mark>

- PA6/25A U/s increases burn rate?
- U/s reduces number of drops

▶PA6/25A/AIPhos – U/s reduces total mass loss and mass of molten drops

Area density variations?

Nanoparticles on the surface

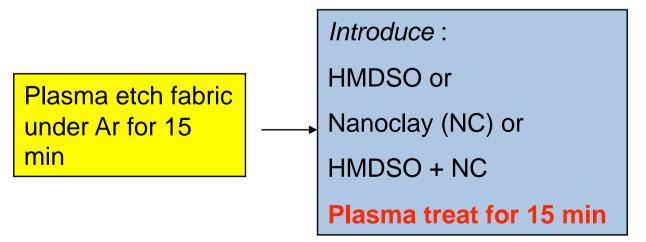
- Potential for:
 - Formation of a heat reflective layer
 - Nanoceramic surface as a flame shield
 - Applied to any fibre/textile substrate
 - Minimise effect on other textile or substrate properties

University of **Bolton**

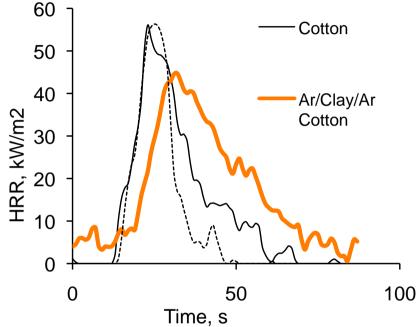
Use known chemistry

Nanoparticle, plasma-activated surface treatments for improving flash fire resistance of textiles

- Heat flux of 75-100 kW/m² incident on a target for up to 3 seconds
- US std: NFPA 2112; Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire (published in 2000)
 Sept 2005, Iraq
- Expose 84 kW/m² for the duration of 3 seconds with a pass /fail rate of 50% under the testing protocols set in ASTM F1930



Recent work in our laboratories


(Horrocks A R, Kandola B K, Nazaré S and Price D, Flash fire resistant fabric, UK Patent Application 0900069.6, 5 January 2009).

Fabrics:100% CottonProban® cottonNomex® aramid

- Use an experimental atmospheric argon plasma torch to activate FR textile substrates in the presence of a silicon-containing monomer and functional nanoparticles.
- Si monomer: hexamethyldisiloxane (HMDSO)
- Nanoclay: Na-MMT and quaternary phosphonium salt functionalised MMT

Cone results for Cotton at 35 kW/m²

Plasma treatment	TTI,	TTP,	PHRR,
	S	S	kW/m²
Untreated cotton	14	23	56
Ar	19	25	58
Ar/Clay/Ar	27	32	45
Ar-HMDSO	15	21	58
Ar/Clay/Ar-HMDSO	22	23	54

TTI and TTP increase

Cone results for Nomex at 60 kW/m²

Plasma treatment	Mass	TTI, s	TTP, s	PHRR, kW/m ²
	change, %			
Nomex only	-	13	16	83
Ar	-2.8	16	20	73
Ar/Clay/Ar	-0.6	NI*	-	-
Ar-HMDSO	1.6	NI*	-	-
Ar/Clay/Ar-HMDSO	3.5	NI*	-	-
NI = "N	lo ignition	"		

Durability

Effect of an accelerated wash removes plasma effect with 100% cotton but increases TTI/reduced PHRR retained for Proban® and Nomex® fabrics

University of Bolton

Conclusions

- challenges
- New chemistry?
- Environmental acceptability: halogen acceptability?...Risk-benefit?
- Make current chemistry work harder
- Char-promotion in thermoplastics
- Smart FR/HR systems
- Nanocomposite fibres