

HYBRID ORGANIC-INORGANIC FINISHING FOR MULTIFUNCTIONAL TEXTILES

G. Brancatelli¹, C. Colleoni¹, A. Gigli¹, M.R. Massafra², N. Paris¹

G. Rosace¹

¹ Università degli Studi di Bergamo, via Marconi 5, Dalmine (Bg), Italy

² Stazione Sperimentale per la Seta - via G. Colombo, 83 - 20133 Milano, Italy

PRESENTATION OUTLINE

1 Introduction

2 Material and method

UNIVERSITÀ DEGLI STUDI DI BERGAMO

3 Results and discussion

4 Conclusion

Where is innovation in textile finishing What is the sol gel process Why hybrid structure finishing

CHEMICALS IN TEXTILE FINISHING

Finishing is the finite region of the second second

- Treatments are not always mutually compatible and require large amounts of thermal energy for water heating and drying;
- The processes can negatively affect the textile substrate (dpi, tensile strength, hand, etc.);
- Chemicals usually have a high environmental impact;
- ✓ High ratio: applied quantity / performance achieved.

TEXTILE FINISHING: Research items

Small batches Just in time **Customized production Innovation of** processes Reduced **Improvement of** environmental **functionalities** impact

> Chemicals Water use Energy use

Smart textiles Protection Self-cleaning Multifunctional

1 Introduction

hod 3 Results and discus

INNOVATION IN TEXTILES FINISHING

SOL-GEL CHEMISTRY

First step: hydroxylation upon the hydrolysis of alkoxy groups

Particles in a dispersed state in the solvent realize an independent colloidal suspension (Sol)

— M — OR + H—OH

The usual molecular precursors are metallo-organic compounds such as alkoxides $M(OR)_n$, where M is a metal like Si, Ti, etc. R is an alkyl group (R = CH₃, C₂H₅, etc.). Tetraethylorthosilicate (TEOS), Si(OC₂H₅)₄, is commonly used in the sol–gel synthesis of silica

SOL-GEL CHEMISTRY

Second step: polycondensation process leading to the formation of branched oligomers and polymers with a metal oxo based skeleton and reactive residual hydroxo and alkoxy groups

HYBRID ORGANIC-INORGANIC MATERIALS

= organic molecule, polymer, bio-polymer

HYBRID ORGANIC-INORGANIC MATERIALS

CHEMICALS AND PROCESSES USED

TEXTILE FABRICS CHARACTERIZATION

Morphological and chemical characterization

SEM-EDX, **FT-IR**

Cellulose degradation mechanism

THERMAL BEHAVIOUR:

Thermogravimetric/Differential Thermal Analysis (TGA/DTG)

Differential Scanning Calorimetry (DSC)

PERFORMANCES TESTED

Flame retardant:

Flammability Tester Model 7633E according to ASTM D1230.

Abrasion resistance:

Martindale Abrasion Test Method, according to ISO12947-2000

FILM CHARACTERIZATION: SEM-EDX

Untreated cotton fibres show characteristic parallel grooves. The surface of fabrics treated with pure silica nano-sol (**S**) doesn't show significant modification with respect to the untreated one.

The film becomes evident on the fabric treated with the organic-inorganic nano-sol (**S-P**), where particles are clearly anchored on the fibre surface.

The presence of the cross-linker in the nano-sol formulation (**S-P-C**) makes the hybrid coating more homogeneously distributed around the cotton fibre.

duction 2 Material and method 3 Results and discussion 4 Conclu

FILM CHARACTERIZATION: FT-IR

FT IR ATR spectra (between 1300-650 cm⁻¹) of cotton fabrics.

In S and S-P spectra Si-O bending band is evident at 800 cm⁻¹;
In S-P and S-P-C spectra the P=O stretching band (typical of P(V)-compound) appears at 1202 cm⁻¹.

CELLULOSE DEGRADATION MECHANISM

Formation of stable char is one of the desirable mechanisms of flame retardation in polymers, since the char layer acts both as a thermal insulator and as a barrier to oxygen diffusion.

The proposed hybrid finishes combine the following effects:

- dehydration favoured by P(V)-compound;
- stabilization of the char by silica thin layer (thermal barrier-heat resistance).

THERMAL BEHAVIOUR:

Thermogravimetric/Differential Thermal Analyses (TGA/DTG)

THERMAL BEHAVIOUR:

Differential Scanning Calorimetry (DSC)

DSC curves of cotton fabrics in nitrogen atmosphere.

3 Results and discussion

FLAMMABILITY TESTS

Flammability Tester Model 7633E according to ASTM D1230 (after a 5 s flame exposition)

Untreated cotton fabric burns with a rapid flame

The treatment with pure silica nano-sol (S) slows down the cellulose combustion.

S-P and S-P-C treatments have brought nonflammable property to cotton fabrics.

ABRASION RESISTANCE OF FABRICS

Martindale Abrasion Test Method, according to ISO12947-2000

Martindale test results for untreated and treated cotton fabrics: weight loss % versus numbers of rubs.

CONCLUSION

Facoltà di

Indegneria

Mens

✓ The sol-gel process allows to realize multifunctional textile surface

ERGAMO

- "Hybrid Organic-Inorganic" finishes are synthesized in water or hydroalcoholic solution at low temperature
- \checkmark The amount of chemicals applied is lower than in traditional treatments
- The polymerization occurs at temperature lower than actual finishing
- The flame retardant treatment does not require any additional process/ chemical for curing
- ✓ Applications are made using traditional equipments

UNIVERSITÀ DECLI STUDI

