

The search for superior cotton fibres of the future: Novel small scale tests needed today

MSc. Özgür Ceylan prof. dr. ir. Karen De Clerck

Ghent University - Belgium Department of Textiles

Cotton is an important cash crop in many developing economies

Main merchandize export

up to 40 % - more than 5 % of GDP

Important contributor to rural livelihoods

100 million rural households

Sustainable material

carbon and energy positive

Good fibre characteristics

water absorption, light weight, biodegradability ...

Cotton production suffers from the increased competition of synthetic fibres

Intensive R&D synthetic fibres tuneable fibres reduction in costs new uses quality improvements (similar to cotton properties) Increased fibre demand same rate as population

To remain competitive cotton fibre quality must be improved

Chemical treatments

extra processes, costly, unsustainable

Plant breeding

limitations in compatibility availability of traits

Bioengineering

possibility of transferring foreign genes

- fibre quality modification
- stress tolerance
- fungus resistance

New bioengineering approach is to produce cotton for high value added applications

Altered Reactivity

efficient dyeing process

- improved fastness properties
- decreased dyeing time and waste water

improved reactivity with reactants

- flame retardants
- anti-crease agents
- softeners etc...

Flame retardant cotton

inherent flame retardancy

New test methods applicable on a few grams of material should be developed

Reactivity

A semi industrial dyeing method

C.I. Acid Orange 7 method

Flame Retardancy

Thermo gravimetric analysis (TGA)

New test methods applicable on a few grams of material should be developed

Reactivity

A semi industrial dyeing method

C.I. Acid Orange 7 method

Flame Retardancy

Thermo gravimetric analysis (TGA)

A small scale dyeing method was developed for indirect evaluation of reactivity

Dyeing of Fibres

allows dyeing of amounts less than 100 mg

Spectroscopy measurements

a dedicated sample holder was used

calculation of colour coordinates (L*, a*, b*)

optimisation of sample amount for spectroscopy

Statistical Analysis

one way ANOVA

Screening tests for bioengineered lines

1st phase lines

Sample amount has no correlated effect on spectroscopy measurements

A standard direct dyeing process

Sample amount	Mean ∆E	Standard Dev.
100 mg sample	33.80	.86
50 mg sample	33.88	.72
30 mg sample	34.40	.99
20 mg sample	34.82	.41

9 replicates for each sample

The reproducibility of dyeing experiments is good (.05 significance level)

A standard direct dyeing process

	Mean ∆ E	Standard Deviation	F	Significance
Sample 1	18.58	.72		
Sample 2	18.52	.49	1 70	20
Sample 3	17.97	.54	1.70	.20
Sample 4	18.83	.70		

5 replicates for each sample

Reactivity of first phase bioengineered line is slightly higher than reference lines

A standard reactive dyeing process

Cotton Lines	⊿ E (1st Dyeing)	Standard Deviation	⊿ E (2nd Dyeing)	Standard Deviation
Reference	53,17	,41	53,75	,34
Control line	51,32	,31	52,27	,46
Line 1	54,72	,29	54,16	,58

3 replicates for each dyeing / 5 replicates for spectroscopy measurements

New test methods applicable on a few grams of material

Reactivity

A semi industrial dyeing method

C.I. Acid Orange 7 method

Flame Retardancy

Thermo gravimetric analysis (TGA)

C.I. Acid Orange 7 is a spectrophotometric method used for detection of amino groups

Feasibility study

using cationic yarn as a positive control

Optimisation

time of dyeing

Screening tests for bioengineered lines

2nd phase lines

C.I. Acid Orange 7 is a sensitive method for the determination of cationic groups

	Absorbance at 484 nm	Standard Dev.	
Stock solution	0.50	.005	
Cotton fibre	0.46	.002	
Reference yarn	0.45	.004	
Cationic yarn	0.16	.005	

2 replicates for each sample

wavelength nm

Dyeing time has a minor effect on the value of maximum absorbance

	Absorbance at 484 nm (1 hour)	Std. Dev.	Absorbance at 484 nm (2 hours)	Std. Dev.	Absorbance at 484 nm (3 hours)	Std. Dev.
stock solution					0.498	.0003
reference yarn	0.463	.005	0.462	.0006	0.464	.007
cationic yarn	0.194	.0002	0.193	.0008	0.191	.002

2 replicates for each sample

Reactivity of trangenic lines is higher than reference fibres

Test methods applicable on a few grams of material

Reactivity

A semi industrial dyeing method

C.I. Acid Orange 7 method

Flame Retardancy

Thermo gravimetric analysis (TGA)

Three main major weight loss regions were observed on thermograms of fibres

The second and the third decomposition onset T °C differ between fibres and fabrics

The concentration of FR agent has an effect on TGA thermograms of fibres

New test methods applicable on a few grams of material should be developed

Reactivity

A semi industrial dyeing method

C.I. Acid Orange 7 method

Flame Retardancy

Thermo gravimetric analysis (TGA)

TTI, HRR and pK HRR values of fibres are quite different from fabrics

Differences between untreated and FR treated fibres can be observed by Cone test

untreated fibre

Low concentration

High concentration

Cone	TTI	pK HRR	HRR
untreated	5,3	46,3	28,4
Low	10,6	45,93	25,38
High	15	24,71	13,77

Small scale tests that reliably predict the performance of cotton fibres is essential

Reactivity

A small scale dyeing method is developed

A conventional spectro-photometric method is adapted

Flame retardancy

The feasibility of TGA was tested

Cone calorimeter was adapted for fibre samples

The preferred techniques are accurate and can be used for the evaluation of bioengineered cotton fibres

Acknowledgements

Institute for the Promotion of Innovation by Science and Technology in Flanders Project: BIOCOT

/FRSI

