STUDY OF FLAME RETARDANCY PROPERTIES OF NANOPARTICLE-BASED TEXTILE FABRICS

<u>Jennifer Tata</u>, Jenny Alongi, Federico Carosio, Mihaela Ciobanu, Alberto Frache, Giulio Malucelli Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino –Alessandria Branch

jennifer.tata@polito.it

22nd IFATCC INTERNATIONAL CONGRESS May 7, 2010 – Stresa (Italy)

OUTLINE

• TOP-DOWN approach

- \circ Simply immersion (S_I)
- Plasma surface modification (PT)
- Results
- BOTTOM-UP approach
 - Sol-gel process
- Conclusions

TOP-DOWN Approach NANOPARTICLES & TEXTILE FABRICS USED

<u>Textile fabrics</u>:

- 100% polyester (PET)
- **o** 100% cotton (COT)
- 65% polyester + 35% cotton (PET-COT)

Nanoparticles:

• Hydrotalcite (Pural MG63HT – Sasol) • SiO_2 (Sidistar T120 – Elkem AS)

CHARACTERIZATION Hydrotalcite

Hydroxides Layers: positive charge

Interstitial **anions** to compensate positive layers

 SIO_2

Nano-size spherical amorphous silicon dioxide

EXPERIMENTAL SECTION PREPARATION OF NP-BASED TEXTILE FABRICS

• 1° step: immersion of textile into NP suspension

• NP fixation by thermal treatment

Hot disks @ T= 200°C, P= 2.5Ton for 10min **EXPERIMENTAL SECTION** PREPARATION OF NP-BASED TEXTILE FABRICS

o Plasma etching of the surface (O_2)

• Immersion for <u>60min</u> in a NP suspension

• NP fixation by thermal treatment @ T=200°C, P=2.5Ton for 10min

Plasma surface modifications: ETCHING APPARATUS AND CONDITIONS

Cold plasma RF 40 kHz

High frequency generator

Sample for etching process

Etching conditions: Gas: O₂ Pressure: 5x10⁻¹ mbar Power: 200 W Time: 5 min

RESULTS CONE CALORIMETRY

Hydrotalcite loaded textiles

		TTI (s)	Δ (s)	pkHRR (kW/m²)	Δ (%)	FPI
	PET	166	-	95	-	0,57
НТ	S_I_{30}	134	-32	75	-21	0,56
	S_I_{60}	226	+60	76	-20	0,34
	РТ	170	+4	45	-53	0,26
${ m SiO}_2$	S_I ₃₀	122	-44	100	+5	0,82
	S_I_{60}	105	-61	81	-15	0,77
	PT	192	+26	72	-24	0,38

RESULTS SEM & EDS

RESULTS CONE CALORIMETRY

PE

r textil

		TTI (s)	Δ (s)	pkHRR (kW/m²)	Δ (%)	FPI
	PET-COT	14	-	138	-	9,86
	S_{130}	74	+60	121	-12	1,64
ΗT	S_I_{60}	20	+6	94	-32	4,70
	РТ	64	+50	108	-22	1,69
	$S_{I_{30}}$	20	+6	130	-6	6,50
SiO_{2}	S_I_{60}	20	+6	127	-8	6,35
	РТ	36	+22	107	-22	2,97

SEM & EDS **PET textiles**

Immersed for 30min

Mg

Immersed for 60min

Mg

Al

A1

Si

RESULTS SEM & EDS

Immersed for 30min

Electron Image

COT textiles

Mg

Immersed for 60min

Mg

Al

Synergism between HT and SiO₂ CONE CALORIMETRY

PET textiles

			TTI (s)	Δ (s)	pkHRR (kW/m ²)	Δ (%)	FPI
		PET	166	-	95	-	0,57
	HT	S_I_{60}	226	+60	76	-20	0,34
c	${ m SiO}_2$	S_I_{60}	105	-61	81	-15	0,77
l		S_I ₍₆₀₊₆₀₎	294	+128	87	-8	0,30

Synergism between HT and SiO₂ CONE CALORIMETRY

COT textiles

			TTI (s)	Δ (s)	pkHRR (kW/m²)	Δ (%)	FPI
		COT	14	-	124	-	8,86
	HT	S_I_{60}	22	+8	95	-23	4,32
	${ m SiO}_2$	S_I_{60}	18	+4	95	-23	5,28
0		S_I ₍₆₀₊₆₀₎	34	+20	86	-31	2,53

BOTTOM-UP Approach PREPARATION OF NP-BASED TEXTILE FABRICS

Sol-9 Process

 $TEOS:H_2O$

1:1

2:1

3:1

74

68

46

-92

-98

-120

88

99

68

-7

+4

-28

1,46

1,48

		TTI (s)	Δ (s)	pkHRR (kW/m²)	Δ (%)	FPI
	СОТ	14	-	124	-	8,86
	1:1	16	+2	87	-30	$5,\!44$
J:SC	2:1	10	-4	101	-18	10,10
TE(3:1	12	-2	81	-35	6,75

+12

+8

26

22

2:1

3:1

-19 110 -20 106 -23

4,23

4,82

TOP-DOWN vs BOTTOM-UP

	FPI			
	TOP-DOWN	BOTTOM-UP		
PET	0.38	1.19		
СОТ	4.30	5.44		
PET-COT	2.97	4.27		

CONCLUSIONS

- Three different preparation methodologies were carried out in order to load NPs in textile fabrics.
- The use of Plasma for the surface activation enhanced the density of NPs onto the fibers.
- By the TOP-DOWN approach, the samples with the best results from the cone calorimetry point of view were:
 - COT and PET-COT blend textiles simply immersed in a HT suspension for 30min.
 - PET and COT textiles etched and further immersed in SiO_2 suspension.
 - PET etched textiles in HT and SiO₂ suspensions.
 - Synergic effect with the use of both HT and SiO_2 NPs.
 - By the BOTTOM-UP approach, the samples with the best results from the cone calorimetry point of view were only the fabrics of COT and PET-COT blend with a molar ratio $\text{TEOS:H}_2\text{O}$ 1:1.

Articles:

- 1) "Investigation on thermal stability and fire resistance of polyester, cotton and relative blend textile fabrics subjected to sol-gel treatments", Jenny Alongi, Mihaela Ciobanu, Federico Carosio, <u>Jennifer Tata</u>, Giulio Malucelli, submitted to *Journal of Applied Polymer Science*.
- 2) "Influence of cold plasma on thermal and fire stability of PET and cotton textiles treated with nanometric silica and hydrotalcite", <u>Jennifer Tata</u>, Jenny Alongi, Alberto Frache, *on preparation*.
- 3) "Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behavior of polyester", <u>Jennifer Tata</u>, Jenny Alongi, Federico Carosio, Alberto Trache, submitted to *Fire and Materials*.

